Improving Bluetooth Fingerprinting Using Machine Learning

A new paper titled “Augmentation of Fingerprints for Indoor BLE Localization Using Conditional GANs” by Suhardi Azliy Junoh and Jae-Young Pyun, explores the development of a data-augmentation method for enhancing the accuracy of indoor localisation systems that use Bluetooth Low Energy (BLE) fingerprinting.

Bluetooth fingerprinting is a technique used to identify and track devices based on the unique characteristics of the Bluetooth signal, such as hardware addresses and signal strength, at specific locations.

The primary challenge addressed is the labour-intensive and expensive nature of traditional site surveys required for collecting Bluetooth fingerprints. The authors propose a novel approach that employs a Conditional Generative Adversarial Network with Long Short-Term Memory (CGAN-LSTM) to generate high-quality synthetic fingerprint data. This method aims to complement existing fingerprint databases, thereby reducing the need for extensive manual site surveys.

The research found that augmenting the fingerprint database using the CGAN-LSTM model significantly improved localisation accuracy. In experimental evaluations, the proposed data augmentation framework increased the average localization accuracy by 15.74% compared to fingerprinting methods without data augmentation. Moreover, when compared to linear interpolation, inverse distance weighting, and Gaussian process regression, the proposed CGAN-LSTM approach demonstrated an average accuracy improvement ranging from 1.84% to 14.04%, achieving average accuracies of 1.065 and 1.956 meters in two different indoor environments. These results underline the effectiveness of the CGAN-LSTM model in capturing the complex spatial and temporal patterns of BLE signals, making it a promising solution for indoor localisation challenges.

The study contributes significantly to the field by demonstrating how synthetic data can enhance the performance of fingerprint-based localisation systems in a cost-effective and efficient manner. The authors suggest that this approach could alleviate the burdensome demands of manual site surveys, offering a viable solution for improving the accuracy of BLE-based indoor localisation while minimizing resource expenditure.

Apple AirTag and Samsung SmartTag Security

The new paper Securing the Invisible Thread: A Comprehensive Analysis of BLE Tracker Security in Apple AirTags and Samsung SmartTags by Hosam Alamleh, Michael Gogarty, David Ruddell, and Ali Abdullah S. AlQahtani, looks into the security of Bluetooth Low Energy (BLE) trackers, particularly Apple AirTags and Samsung SmartTags. The research identifies a broad range of attack vectors, including physical tampering, firmware exploitation, signal spoofing and cloud-related vulnerabilities. It examines the security measures and cryptographic methods used in these devices, revealing that while they provide considerable utility, they also introduce significant security risks.

Apple AirTags and Samsung SmartTags differ in their approach to security and privacy. Apple prioritises user privacy, leading to authentication challenges and successful AirTag spoofing instances. Samsung’s design aims to prevent beacon spoofing but raises concerns about cloud security and privacy. The study highlights the trade-off between battery life and security in the design of Bluetooth trackers, noting the absence of secure boot processes as a vulnerability.

The paper concludes that future developments in Bluetooth tracking technology will likely focus on enhancing security features. This is crucial as these devices become more integrated into the IoT ecosystem and subject to evolving privacy regulations. The research underscores the importance of addressing the security challenges presented by BLE trackers to balance functionality and security in next-generation systems.

What are Bluetooth Tunnel Beacons?

This is a feature in Google Maps on Android that improves navigation through tunnels, addressing the long-standing challenge of maintaining accurate location tracking when GPS signals falter.

Historically, tunnels have posed a significant challenge for digital navigation tools, primarily due to the inability of GPS signals to penetrate the thick layers of earth and concrete. This often results in a loss of real-time location tracking. However, Google Maps has improved the situation through the introduction of Bluetooth tunnel beacons, a feature that uses the power of Bluetooth technology to offer an unprecedented level of location accuracy in subterranean environments.

Bluetooth tunnel beacons operate by emitting signals that are received by a user’s smartphone, providing precise location data to the device. This feature, using technology already implemented by Google-owned Waze utilises these signals in conjunction with the device’s mobile connectivity. Together, they deliver navigation assistance, mirroring the capabilities of a traditional GPS connection.

The feature appears under Settings > Navigation Settings and under the ‘Driving Options’ section near the bottom. The feature is disabled by default, and is described as: ‘Scan for Bluetooth tunnel beacons to improve location accuracy in tunnels’.

The effectiveness of Bluetooth tunnel beacons, however, depends on the presence of these beacons within tunnels. Waze has already installed these beacons in several major cities around the world, such as New York City, Chicago, Boston, Paris, Rio de Janeiro and Brussels.

Indoor Locating Using Beacons in Nursing Care

The new paper Relabeling for Indoor Localization Using Stationary Beacons in Nursing Care Facilities by Christina Garcia and Sozo Inoue from the Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Japan, presents a study on enhancing machine learning for indoor localisation in caregiving, specifically in nursing homes, using Bluetooth Low Energy (BLE) technology.

The study addresses the challenge of limited data available for training machine learning models in indoor localisation, which is critical for monitoring staff-to-patient assistance and managing workload in caregiving environments. The authors propose a data augmentation method that repurposes the Received Signal Strength (RSSI) from various beacons by re-labeling them to locations with fewer data samples, thus resolving data imbalances. This method uses standard deviation and Kullback–Leibler divergence to measure signal patterns and find matching beacons for re-labeling. Two variations of re-labeling are implemented: full and partial matching.

The performance of this method is evaluated using a real-world dataset collected over five days in a nursing care facility equipped with 25 Bluetooth beacons.

Overall, the study highlights the effectiveness of the proposed re-labelling method in enhancing indoor localisation accuracy in nursing care facilities, providing a valuable contribution to the field of caregiving and workload management.

Improved RSSI Indoor Localisation Using AI Algorithms

The article titled Improved RSSI Indoor Localization in IoT Systems with Machine Learning Algorithms by Ruvan Abeysekera and Ruvan Abeysekera focuses on enhancing indoor localisation in Internet of Things (IoT) systems using AI machine learning algorithms. The paper addresses the limitations of GPS in indoor environments and explores the use of Bluetooth low-energy (BLE) nodes and Received Signal Strength Indicator (RSSI) values for more accurate localisation.

GPS is ineffective indoors so the paper emphasises the need for alternative methods for indoor localisation, which is crucial for various applications like smart cities, transportation and emergency services.

The study uses machine learning algorithms to process RSSI data collected from Bluetooth nodes in complex indoor environments. Algorithms like K-Nearest Neighbors (KNN), Support Vector Machine (SVM, and Feed Forward Neural Networks (FFNN) are used, achieving accuracies of approximately 85%, 84%, and 76% respectively.

The RSSI data is also processed using techniques like weighted least-squares method and moving average filters. The paper also discusses the importance of hyperparameter tuning in improving the performance of the machine learning models.

The research claims to provide significant advancement in indoor localisation, highlighting the potential of machine learning in overcoming the limitations of traditional GPS-based systems in indoor environments.

Simple Indoor iBeacon Positioning Method

New research Using iBeacon Components to Design and Fabricate Low-energy and Simple Indoor Positioning Method (PDF) focuses on developing an effective indoor positioning system using iBeacon. The authors propose an enhanced triangulation technique using signal strength signatures for improved indoor positioning precision.

This system integrates a ‘blind’ device and multiple base stations using iBeacon components to form virtual digital electronic fences, effectively receiving signals from moving devices or tags in a targeted area. The proposed method divides the positioning area into rectangular or triangular subareas and establishes a loss value database for improved location estimation.

The system shows high accuracy, with an average error of less than 0.5 m in the worst-case scenario, making it suitable for various environments. The paper covers the architecture of the system, development phases and experimental results demonstrating the system’s effectiveness. The research offers significant insights into low-cost, high-precision indoor positioning methods suitable for diverse applications such as healthcare, smart cities, and industrial settings.

Novel iBeacon Localisation Algorithm Modelling

Recent research A Novel Optimized iBeacon Localization Algorithm Modeling by Jiajia Shi et al, addresses the challenges in achieving high accuracy in indoor object localisation or tracking using iBeacon systems. These systems, which use Bluetooth sensors, are appealing due to their low cost and ease of setup but there can be challenges with accuracy and they can sometimes be susceptible to interference and environmental noise.

To overcome these challenges, the study focuses on developing error modeling algorithms for signal calibration, uncertainty reduction and noise elimination. The novel approach is based on the Curve Fitted Kalman Filter (CFKF) algorithms. The research demonstrates that the CFKF algorithms significantly improve the accuracy and precision of iBeacon localisation.

The paper discusses the limitations of current indoor localisation technologies, including the Received Signal Strength Indicator (RSSI) method, which is affected by multipath fading in indoor environments.

The authors propose a novel CFKF error modelling approach to enhance the estimation accuracy of iBeacon systems in field experiments. This approach includes a developed Kalman Filter (KF) state estimate algorithm based on the modified Least Squares Algorithm (LSA), a system calibration process for the RSSI and estimated distance and the CFKF error modelling for improved accuracy.

An Enhanced Triangulation Technique

Researchers from universities in Taiwan have developed a simple Bluetooth low-energy indoor positioning method using iBeacon components. The system aims to be lightweight, low-cost, and highly precise. The paper, Using iBeacon Components to Design and Fabricate Low-energy and Simple Indoor Positioning Method (PDF), introduces an enhanced triangulation technique using strength signatures of transmitted signals to improve positioning precision in planar locations.

The physical system consists of an observation (they call blind) device and multiple base stations using iBeacon components. These base stations can form virtual digital electronic fences and receive signals from blind devices, such as wearable devices or equipment tags. The positioning area is divided into rectangular or triangular subareas and the location of a blind device can be accurately located in real time using the measured strength of received signals and topology analysis.

The proposed method has an average error of less than 0.5 meters in the worst scenario and can be easily used in various environments. It integrates an STSS database and a triangulation method by evaluating the power values of received directional signals. Compared to traditional triangulation technologies, this method offers better positioning accuracy with simpler implementation procedures, reducing the overall cost of deployment.

View iBeacons

BLE Beacons for Sample Position Estimation in A Life Science Automation Laboratory

There’s new research into BLE Beacons for Sample Position Estimation in A Life Science Automation Laboratory. In life science automation laboratories, monitoring and managing the position of samples is crucial. One emerging solution for sample position estimation in these settings is the use of Bluetooth Low-Energy (BLE) beacons.

Historically, many fingerprinting models that harness received signal strength (RSS) data have been proposed for indoor positioning. However, a large number of these methods require an extensive installation of beacons. In contrast, proximity estimation, which relies solely on a single beacon, emerges as a more apt solution, especially for vast automated laboratories.

The intricacies of the life science automation laboratory environment present hurdles for the conventional path loss model (PLM), a prevalent method of proximity estimation based on radio wave propagation. Addressing this challenge, the paper introduces BLE sensing devices crafted specifically for sample position estimation. The proximity estimation rooted in BLE beacon technology is explored within a machine learning framework. Here, support vector regression (SVR) is employed to capture the nonlinear correlation between RSS data and distance. Concurrently, the Kalman filter is applied to reduce deviations in the RSS data.

Experimental outcomes spanning diverse settings underline the superiority of SVR over PLM. Remarkably, SVR achieved 1m absolute errors for an impressive 95% of test samples. The addition of the Kalman filter augments stable distance predictions, effectively smoothed the raw data and mitigated extreme value impacts.

When estimating positions between parallel workbenches, the framework achieved an average mean absolute error (MAE) of just 0.752m across 12 test positions. And for position estimation on workstations, identification accuracies beyond 99.93%.

In conclusion, for labs aiming to enhance sample position estimation, the BLE beacon paired with an IoT node presents a flexible sensing solution. By integrating machine learning, particularly SVR, and the Kalman filter, this framework offers increased accuracy in both corridors and labs.

Using Beacons To Detect Human Movement

There’s an innovative use of beacons mentioned in the research paper on Developing a Human Motion Detector using Bluetooth. Beacons and its Applications (PDF).

Most motion sensing applications usually place a sensor beacon on the things that will move. The accelerometer in the beacon reports movement. The research paper describes an alternative method of detecting movement of a person, an elderly person in this case, based on the change in blocking of the beacon signal over time. This has the advantage that the beacon doesn’t need to be worn. Also, it doesn’t have to be a accelerometer beacon as any beacon can be used.

The problem with using the strength of the beacon signal (RSSI), is that it varies over time even when there’s no change of blocking in the room. This is due to radio frequency (RF) noise and reflection. The authors of the paper looked into smoothing of the data to filter out such variance in the data:

The report concludes that when averaging over three or more RSSI values, it’s possible to minimise the RF variance and reliably detect the variance caused by human movement in the room.

Another, more reliable, way of detecting movement is to use a beacon with built-in PIR such as the iBS02PIR, M52-PIR, IX32 or MSP01.