What is Bluetooth LINE Service Advertising?

We have just one beacon that can advertise LINE. This post explains LINE advertising with information on the packet format.

LINE Beacons are used alongside the LINE messenger service, which enables users to exchange text, video, and voice messages on both smartphones and personal computers. This service is currently available in Japan, Taiwan, Thailand, and Indonesia. LINE offers developer APIs for both iOS and Android platforms, allowing developers to integrate LINE functionality into their own applications.

The LINE Beacon system works by sending webhook events to a LINE bot whenever a user with the LINE app comes into close range of a registered beacon. This enables developers to create context-aware interactions, tailoring the bot’s behaviour based on the user’s proximity to specific physical locations. In addition, there is a feature known as the beacon banner, which is accessible to corporate users. This allows a promotional banner to appear in the LINE messenger app when the user approaches a LINE Beacon, providing another layer of engagement for location-based services and marketing campaigns.

LINE Bluetooth Advertising
LINE Bluetooth Advertising

Unlike iBeacon, LINE Beacon packets have a secure message field to prevent packet tampering and replay attacks. The secure data is 7 bytes long containing a message authentication code, timestamp and battery level. Secure messages are sent to the LINE platform for verification.

Generating LINE advertising
Generating LINE Advertising

LINE recommend LINE beacon packets be sent at a very high rate of every 152ms. In addition, LINE recommend advertising iBeacon (UUID D0D2CE24-9EFC-11E5-82C4-1C6A7A17EF38, Major 0x4C49, Mino 0x4E45) to notify iOS devices that the LINE Beacon device is nearby. This is because an iOS app can only see iBeacons when in background and LINE beacons can’t wake an app.

We observe that the high advertising rate and concurrent iBeacon advertising aren’t battery friendly and the beacon battery isn’t going to last long.

There’s more information on the LINE developer site on using beacons and the LINE packet format.

Is it Possible to Continuously Scan for Bluetooth Devices on iOS and Android?

We sometimes get asked if it’s possible to use a smartphone as a gateway to scan for Bluetooth devices. The thinking is usually that workers or users already have devices so why not make use of them?

While it is possible, there are many reasons why you might not want to do this:

  • On iOS, Apple hide Bluetooth MAC addresses and for some APIs hide the iBeacon ids making unique identification more difficult.
  • You will find it very difficult to get a continuously scanning app through Apple app store review. You will need strong justifications.
  • Scanning continuously uses lots of battery power, even when advertising with periodic ‘off’ and ‘on’ periods.
  • Capabilities of devices vary meaning you will almost certainly get some end user devices where your implementation won’t work. For example, some manufacturers stop long running processes.
  • On Android there’s a limit of six scans every 30 seconds. Also, it’s necessary to scan in a foreground activity to prevent the operating system from throttling detections. There are hacks to instead run scanning in threads but these aren’t officially supported and so might not be viable in future OS releases. It’s best not to create production apps based on hacks as they can suddenly stop working.
  • Some users will play with their phones and end up purposely or inadvertently disabling your application.

The best scenarios are those where you can dictate the phone type, it can be mains (PSU) powered and the phone isn’t owned by a user (i.e. it’s just used as a gateway). It’s almost always better to use a dedicated gateway.

What Can Block Beacon Signals?

We often get questions asking what kinds of things can block Bluetooth signals and enquiries about the relative blocking of different materials.

Metal obstructions or metal-based surfaces such as metal-reinforced concrete cause the most blocking followed by other dense building materials such as plaster and concrete. Next comes water that you might not think would be a problem but, as people are made up of 60% water, bodies blocking Bluetooth signals can be a significant factor. Least blocking are glass (but not bulletproof), wood and plastics.

Blocking can be caused by wireless noise as well and physical obstructions. This includes electrical noise from other electrical equipment as well as interference from devices using the same 2.4GHz frequency. WiFi on 2.4GHz causes negligible interference.

In extreme cases, a very large number of Bluetooth devices can cause interference with each other because only one can advertise at a time without there being collisions and hence lost data. The maximum number of Bluetooth devices depends on how long and how often the Bluetooth devices transmit. It also depends on whether devices are just advertising or additionally using GATT connections. Bluetooth also has adaptive frequency hopping that helps reduce packet interference.

We have a deeper analysis of interference in the post on Bluetooth LE on the Factory Floor.

Which Beacons are Compatible with iOS and Android?

We often get asked the question which beacons are compatible with iOS and Android. All beacons, whether iBeacon, Eddystone or sensor beacons can be used with iOS and Android. The compatibility is achieved through the implementation of common Bluetooth standards on these mobile platforms.

However, there are some caveats:

  • Android only supported Bluetooth LE as of Android 4.3. Older devices can’t see Bluetooth beacons. Over 99% of users are on Android 4.3 or later so most people can see beacons.
  • Apple iOS doesn’t have background OS support for Eddystone triggering. While iOS apps can scan for, see and act on Eddystone beacons, the iOS operating system won’t create a notification to start up your app when there’s an Eddystone beacon in the vicinity.
  • Apple can’t see beacon’s or other Bluetooth devices’ MAC address or iBeacon ids due to over zealous privacy concerns. It can see iBeacons but you have to pre-declare, already know, their ids.

Rather than beacons being compatible with iOS/Android, we find that there are more problems with particular Android devices not seeing beacons, when in background, due to some manufacturers killing background services.

Also see Which Beacon’s Are the Most Compatible?

View iBeacons

What is a Bluetooth WiFi Gateway?

A Bluetooth WiFi gateway is a device that connects Bluetooth devices to a WiFi network. It allows Bluetooth devices, such as sensors, beacons, or other IoT devices, to communicate with a WiFi network and exchange data with other devices on the network or remote servers or the cloud.

Bluetooth WiFi gateways have both Bluetooth and WiFi capabilities and are able to bridge the communication between these two technologies. They are often used in IoT (Internet of Things) applications, where they can be used to connect a variety of Bluetooth devices to a WiFi network, allowing them to communicate with each other and exchange data.

Gateways are configured through web pages hosted within the gateway itself. These configuration pages allow you to set up the WiFi access point that the gateway connects to, the destination server, typically using protocols such as HTTP or MQTT and determine which Bluetooth devices are allowed to be relayed. The gateway setup also includes filtering options to manage the data sources based on the Bluetooth advertising and/or Bluetooth MAC address. Power for the gateways is generally supplied through a USB connection, which is used solely for power delivery and not for data transfer.

There are also gateways that connect via Ethernet rather than via WiFi.

View Gateways

What is iBeacon Measured Power?

Most beacons’ configuration app have a setting for iBeacon ‘measured power’ or ‘RSSI at 1m’. This doesn’t change the power output by the beacon. Instead, it’s a value that’s put into the advertising data that declares to receiving devices what the power should be at a distance of 1 meter from the beacon. Receiving devices such as smartphones and gateways can use this to help calibrate a calculation to determine the rough distance from the beacon.

iBeacon Measured power setting

You don’t usually change this value and it’s actually rarely used. In most cases the value is irrelevant and can be ignored. However, if your app or receiving device does use this value, it’s best to first do some tests to see what the power level is at 1m in your particular situation. Things like the physical environment, blocking and beacon orientation can affect the actual power level at 1m. Set the value according to your particular scenario.

Read more about transmitted power (as opposed to measured power)

Do You Have an Estimote Alternative?

Several companies have informed us that Estimote is no longer responding to enquiries about purchasing their beacons. It appears they are now more focused on promoting and selling their UWB (Ultra Wideband) tags instead.

This shift is unfortunate for companies that have integrated their solutions with Estimote’s beacons, SDK, and platform. Estimote’s approach, which involves manufacturing their own custom hardware and restricting their platform to only work with their own beacons, means there is no direct replacement for their older products.

However, if your application doesn’t rely on the Estimote SDK and simply detects iBeacon advertisements using the standard Bluetooth libraries available in iOS and Android, then you are not tied to Estimote’s hardware. In such cases, you are free to use any iBeacon. For more details, please refer to our post regarding beacon compatibility.

Read about the advantages of generic beacons

Does Bluetooth LE Work the Same Way in all Countries?

Bluetooth technology operates on a global scale using the 2.4 GHz ISM band, allowing devices to be used internationally without specific adaptations for local radio spectrum regulations. The Bluetooth Special Interest Group (SIG) ensures that all devices meet international standards for compatibility and interoperability.

However, there are certain regulatory considerations that vary by country. Some nations require Bluetooth devices to undergo type approval, for example CE (for Europe) or FCC (for USA), to ensure they adhere to local standards. Additionally, power output limitations for Bluetooth devices can differ from one country to another. For example, Australia permits a maximum of 200 mW e.i.r.p. within a specific frequency range, while most European countries adhere to standard ISM band regulations.

Do Bluetooth Beacons Need a Licence to Use?

Bluetooth Low Energy (BLE) technology does not require a licence for use, making it a popular choice for various devices including smartwatches, fitness trackers, laptops, PCs, smartphones and industrial equipment.

BLE operates in the 2.4 GHz ISM (Industrial Scientific Medical) band, which is licence-free in most countries. This means that anyone can use this frequency range without obtaining a specific permit which has contributed to the widespread adoption of BLE technology. BLE is an open standard managed by the Bluetooth Special Interest Group (SIG), which allows for broad implementation across various devices.

Can an iBeacon Send Users to a Website?

The short answer is no, iBeacons cannot directly send users to a website. iBeacons do not have the capability to push content or URLs to devices automatically. Instead, they rely on compatible apps to detect their presence and take appropriate actions which can include sending the user to a web site.

There used to be a mechanism in Android that used the Eddystone-URL advertising format but this has since been discontinued by Google.