Latest Nordic Wireless Quarter Magazine

Nordic Semiconductor, the manufacturer of the System on a Chip (SoC) in most beacons, has published the latest online issue of Wireless Quarter Magazine. It showcases the many uses of Nordic SoCs.

The latest issue of the magazine highlights the use of the same Nordic SoCs in the following Bluetooth solutions:

  • A wearable that provides walk cueing for people with Parkinson’s disease
  • A new Casio watch offers 16 hour battery life with non-stop GPS
  • An electric jet board offering wireless remote control
  • Industrial Monitoring devices that detect equipment issues
  • An asset tracker that operates on harvested indoor light energy
  • An orthopaedic sensor that improves post-surgery patient outcomes

There’s an in-depth article on the ‘The Internet of Medical Things’ explaining how this will transform healthcare. An article on ‘Building the Clean Dream’ describes how IoT is promising cities a smarter way to manage the growing challenges of waste and pollution. A feature on ‘Safety First’ shows how the safety industry is using wireless solutions to protect us in our homes, at work and while we play.

Which Beacons Transmit a MAC Address?

A MAC (Media Access Control) address is a hardware identification number that uniquely identifies each device. In the context of Bluetooth, a MAC address is used to identify a specific Bluetooth device, such as a smartphone, headset or a Bluetooth beacon. All beacons transmit a Bluetooth MAC Address which is a 48-bit address usually represented in hexadecimal format like this: 0123456789AB.

All devices such as smartphones can see the incoming MAC addresses that are sent as part of the device discovery stage rather than the main Bluetooth LE advertising payload. iOS is a bit strange and non-standard because it hides detected Bluetooth MAC address from apps, and hence from users, when detecting beacons and other Bluetooth devices.

No such restriction happens on Android or any other device. The rationale is probably that Apple wants you to use their ids, the iBeacon UUID, major and minor or the Peripheral Id rather than the MAC address. Apple also probably think they are protecting privacy in some way. A few beacons and other devices such as sensors and fitness trackers additionally put the MAC address into the advertising payload which circumvents Apple’s restrictions and allows reading of the MAC address by apps.

Improving Safety on Construction Sites

Researchers from Spain have recently developed a safety system that uses Bluetooth Low Energy (BLE) to ensure the correct use of Personal Protection Equipment (PPE) on construction sites. This innovative system is not only robust and reliable but also easily adaptable to various dangerous machines.

The system is built on RSSI (Received Signal Strength Indicator) information transmitted by BLE devices arranged in a particular rig combined with a Bayesian distance estimator. The aim is not merely to signal risky situations caused by the misuse of PPE but to intervene swiftly and robustly to eliminate the safety risk.

The researchers have built upon previous results on the statistically sound measurement of distances and closeness in construction sites. By collocating several BLE transmitters near orthogonally, they have managed to reduce interferences while avoiding the cost of more advanced technologies.

The practical contributions of this research include the design of the system, a working prototype and a thorough statistical analysis for finding the optimal parameters for both the software and the equipment. The research shows that using several orthogonally collocated BLE transmitters improves robustness and overall performance without requiring more complex and costly equipment.

The improvements are most significant as the number of transmitters increases. Using a diversity of devices is better when these devices are noisy and it also enhances the robustness of the solution. An arrangement of orthogonal BLE beacons allows for an increased rate of advertising messages, and an extended Kalman filter plus a discrete filter can benefit from that increased flow of data, providing a simple and efficient approximation to the problem of safety estimation.

The use of an additional beacon to notify the correct use of the PPE, implemented inside a wearable microcontroller, is a very flexible solution. It allows for different local implementations using various sensors and measurements without the need to modify the RSSI-only method in the receiver, and with any number of users. The system can be easily integrated into a wide variety of dangerous machines and tools such as angle grinders, concrete mixers and pneumatic drills.

VMware Workspace ONE UEM Supports iBeacons

VMware Workspace ONE UEM (Unified Endpoint Management) is a comprehensive solution designed to manage and secure endpoints in an enterprise environment. It’s part of the broader VMware Workspace ONE platform, which offers a suite of tools for digital workspace services.

Workspace ONE UEM provides IT administrators with the ability to manage a wide range of devices, including smartphones, tablets, laptops, and desktops, across various operating systems like iOS, Android, Windows and macOS. The goal is to streamline the process of deploying, securing, and managing these devices, ensuring that they are compliant with company policies and that corporate data remains protected.

Apple iBeacon, integrated with Workspace ONE Intelligent Hub v5.1+, enhances location awareness for devices using Bluetooth Low Energy (BLE). BLE offers efficient device tracking without draining battery life and is more precise than geofencing. iBeacons can monitor multiple regions at once, ensuring privacy as devices are tracked only upon entering or exiting specific areas.

To utilise this, set up a third-party iBeacon, configure it in the UEM console, establish iBeacon regions and then push device profiles with iBeacon capabilities. This allows the Workspace ONE Intelligent Hub to detect when devices enter these regions and log any changes in iBeacon ranges.

View iBeacons

Why is There Variation of RSSI?

We sometimes get asked whether a beacon is faulty because a customer is seeing a lot of fluctuation in the Received Signal Strength Indicator (RSSI) values, even in a seemingly stable environment and with no change in distance. The short answer is: this is normal. The reason for this lies in the complex nature of radio signals and how they interact with the environment.

Radio signals are susceptible to a variety of factors that can affect their received strength. When a beacon sends out a signal, it doesn’t just travel in a straight line to the receiver. Instead, it disperses in multiple directions and can bounce off walls, floors and other objects.

Reflections can cause the signal to take different paths before reaching the receiver. Each path can have a different length and, therefore, a different time delay. This results in a phenomenon known as multipath fading, where multiple copies of the signal arrive at the receiver at slightly different times. This can cause fluctuations in the RSSI values you observe.

While reflections are a primary cause of RSSI fluctuation, they are not the only one. Other physical changes in the environment can also contribute to this variability. For example, the presence of people moving around can affect the signal, as the human body is mostly water and can absorb radio frequencies. Similarly, other electronic devices emitting radio frequencies can interfere with the signal, causing further fluctuations.

To get a more accurate understanding of the signal strength, it’s advisable not to rely on a single RSSI value. Instead, you should look at many RSSI values over a period of time and calculate the average. This approach helps to mitigate the effects of temporary fluctuations and provides a more stable and reliable measure of signal strength.

Many people, particularly researchers, have looked into the intricacies of RSSI and its variability. Various algorithms and methods have been developed to improve the accuracy of RSSI-based distance estimation and location tracking. For those interested in a deeper understanding or potential solutions to this issue, we recommend looking at the articles tagged RSSI and RSSIStability on our blog.

BLE Beacons for Sample Position Estimation in A Life Science Automation Laboratory

There’s new research into BLE Beacons for Sample Position Estimation in A Life Science Automation Laboratory. In life science automation laboratories, monitoring and managing the position of samples is crucial. One emerging solution for sample position estimation in these settings is the use of Bluetooth Low-Energy (BLE) beacons.

Historically, many fingerprinting models that harness received signal strength (RSS) data have been proposed for indoor positioning. However, a large number of these methods require an extensive installation of beacons. In contrast, proximity estimation, which relies solely on a single beacon, emerges as a more apt solution, especially for vast automated laboratories.

The intricacies of the life science automation laboratory environment present hurdles for the conventional path loss model (PLM), a prevalent method of proximity estimation based on radio wave propagation. Addressing this challenge, the paper introduces BLE sensing devices crafted specifically for sample position estimation. The proximity estimation rooted in BLE beacon technology is explored within a machine learning framework. Here, support vector regression (SVR) is employed to capture the nonlinear correlation between RSS data and distance. Concurrently, the Kalman filter is applied to reduce deviations in the RSS data.

Experimental outcomes spanning diverse settings underline the superiority of SVR over PLM. Remarkably, SVR achieved 1m absolute errors for an impressive 95% of test samples. The addition of the Kalman filter augments stable distance predictions, effectively smoothed the raw data and mitigated extreme value impacts.

When estimating positions between parallel workbenches, the framework achieved an average mean absolute error (MAE) of just 0.752m across 12 test positions. And for position estimation on workstations, identification accuracies beyond 99.93%.

In conclusion, for labs aiming to enhance sample position estimation, the BLE beacon paired with an IoT node presents a flexible sensing solution. By integrating machine learning, particularly SVR, and the Kalman filter, this framework offers increased accuracy in both corridors and labs.

What is the Difference Between Beacon and iBeacon?

iBeacon is a protocol designed by Apple that sits on top of, or uses, the Bluetooth LE protocol. Think of Bluetooth LE as a standard mechanism for sending a short amount of information that can be anything. In the case of iBeacon this ‘anything’ is the UUID, major, minor and a power calibration value called the measured power. We have a post explaining these iBeacon values.

Xerox Bluetooth Kit for AirPrint

Xerox offers a Bluetooth Kit designed for AltaLink B81XX and C81XX models, which facilitates AirPrint discovery through iBeacon technology. This kit not only provides Bluetooth connectivity but also enables iBeacon discovery, making it easier for users to find and link up with compatible Xerox printers via their Apple devices.

Additionally, the kit supports Wi-Fi Direct, allowing for mobile printing without the need for a network connection.

View iBeacons

New Waterproof Humidity Sensor Beacon

Having a beacon being able to detect humidity (and temperature) while at the same time being waterproof is difficult to achieve because the case itself usually needs to be waterproof thus preventing the sensor on the printed circuit board from sampling the environment. The new M52-PA-S is unique in that it solves this problem by having a permeable seal on the case and a waterproof printed circuit board.

The ‘PA’ signifies this beacon also has an extra RF amplifier for a longer range up to 150m. This beacon can be used in many different modes: 1 channel advertising, 2 channels advertising, 1 + 2 advertising, sensor advertising and Meeblue fixed data. The two main advertising channels can be iBeacon, Eddystone UID, Eddystone URL or user defined. When sensor advertising, the main channels are disabled and advertising includes a unique id, temperature, humidity and battery voltage.

Can I Use My Phone as Bluetooth Beacon?

A question that often arises is, “Can I use my phone as a Bluetooth beacon?” The answer is ‘yes’.

Before we get into the details, it’s essential to understand what a Bluetooth beacon is. In simple terms, a Bluetooth beacon is a small wireless device that transmits a periodic signal to other Bluetooth-enabled devices within its range. This technology is often used for indoor positioning, sensing and other location-based services.

Technically, yes, a smartphone can function as a Bluetooth beacon. Both Android and iOS platforms offer apps to turn your phone into a beacon transmitter. However, there are some caveats.

Using your phone as a Bluetooth beacon can be a significant drain on your battery. Beacons are designed to be low-energy devices that can run for years on a single battery. Your phone, on the other hand, has many other functions that consume power, so using it as a beacon will lead to the need for frequent charging.

The range of a dedicated Bluetooth beacon can be up to 100 metres, depending on the model and settings. A smartphone’s Bluetooth range is generally much shorter, limiting its effectiveness as a beacon.

While there are apps such as Locate Beacon, Beacon Simulator (for iOS), Beacon Simulator, nRFConnect (for Android) that can turn your phone into a beacon, these are often not as reliable or feature-rich as dedicated beacon hardware. You won’t be able to change all the settings such as power, advertising period and advertising type as you would with a dedicated hardware beacon. Additionally, running such an app in the background may interfere with other phone functions and some phones eventually close long running services.

Despite these limitations, there are scenarios where using your phone as a Bluetooth beacon could be useful. If you’re a developer or a business looking to experiment with beacon technology, using a phone can be a cost-effective way to test your ideas before investing in dedicated devices.

While it’s possible to use your phone as a Bluetooth beacon, it’s generally not the most efficient or reliable method for most applications. However, for personal use or small-scale use, it can serve as a convenient alternative. If you’re considering implementing beacon technology on a larger scale, investing in inexpensive dedicated hardware is usually the better option.

View Bluetooth beacons