Beacons on Cruise Ships

There’s a new in-depth article at PC Mag on how Carnival use beacons, based on Bluetooth and NFC, on cruise ships. As the article says, “it provides an excellent case study in how to use technology to enhance your customer’s experience”.

The beacons are branded as ‘OceanMedallion’ and allow:

  • Guests to unlock their stateroom
  • Guests to pay for drinks or items in shops
  • Guests to play in the casino
  • Housekeeping staff to keep track of whether or not the stateroom is occupied

7,000 sensors throughout each ship detect the beacons and 4000 interactive portals provide information for guests. A mobile app can also be used that can help navigate about the ship and find fellow passengers.

Beacons provide a way to eliminate friction in the passenger experience. The software system uses edge devices to perform operations close to where the user has been detected so as to reduce latency and network traffic. Nevertheless, the system attempts to centralise data so as not to replicate information.

The system provides Carnival with lots of useful data on guest preferences, transactions (for billing) and preferred areas of the ship. Aggregated information might be used to determine heavily used areas (for maintenance), pinch points and redundant areas of the ship to feed into improvements to the ship.

Read about Beacons in Hospitality

Read about Beacons in Visitor Spaces

New Beacon Power Measurement Service

Since our original post on power measurement in 2016, we have been occasionally providing power measurement services as part of consultancy. Last week we started offering it as separate service orderable via our web store.

Our in-house designed power analyser

We take a beacon the same as yours, or one you send to us, and measure the actual power use with your specific settings.

Note, however, that if you will be using batteries that have been included with beacons, those batteries will have been used for an indeterminate time in the factory for soak testing the beacon. You will need to use new batteries to obtain the maximum battery life.

Digital Manufacturing on a Shoestring

In a previous post we asked ‘What is Productivity?’ and shared how the first wave of IT productivity related to cloud computing, customer relationship management (CRM) systems and enterprise resource planning (ERP) was only taken up by the top 5% frontier companies.

We explained how IoT, 4IR and AI machine learning will improve productivity but again, likely only for frontier companies. The difference this time is that the newer technologies will have more far reaching consequences. The frontier companies will further extend their reach over the laggards. The majority of the 5% are large companies with large budgets who are able to engage consultances such as IBM, Deloitte, Atos, PwC, WiPro, Accenture and KPMG. But what of the small to medium enterprises (SMEs)? Can they compete?

In most countries, a large proportion of companies are small to medium size. For example, in the UK, the Office for National Statistics says 98.6% of manufacturers are (SMEs). These organisations are more price sensitive and usually don’t have the luxury of significant financial resources for engaging the top consultancies and implementing their expensive solutions. Small and medium sized organisations have previously found it difficult to digitise due to the lack of availability of reasonably priced solutions.

However, solutions doesn’t have to be expensive. Low cost sensors such as Bluetoooth beacons, motion cameras, consumer AR can be combined with affordable cloud services to create solutions on a ‘shoestring’ budget. This is the aim of the University of Cambridge and University of Nottingham’s ‘Digital Manufacturing on a Shoestring’ initiative. The Institute for Manufacturing (IfM) is helping manufacturers benefit from digitalisation without excessive cost and risk. View the project’s latest news and communicate with them via Twitter.

Read about Beacons in Industry and the 4th Industrial Revolution (4IR)

Survey of Mesh Technologies

There’s useful new research on Wireless Mesh Networking: An IoT-Oriented Perspective Survey on Relevant Technologies by Antonio Cilfone, Luca Davoli, Laura Belli and Gianluigi Ferrari of University of Parma, Italy. It covers how various communication technologies are suitable for mesh networking.

The paper explains mesh topologies and routing protocols. It describes Bluetooth:

“BLE is presently raising more and more attention and is becoming one of the leading technologies for both IoT-oriented and industrial scenarios”

The authors provide an in-depth introduction to SIG Bluetooth Mesh. (Note that an excellent higher level overview also very recently became available from InsightSIP). The research paper also mentions other Bluetooth mesh implementations such as the draft IETF Bluetooth Mesh for IPv6.

Applications such as smart city, industrial monitoring and smart agriculture are considered and factors such as interoperability and security are mentioned. Finally, the paper compares other protocols such as Thread, ZigBee and LoRaWAN.

Read about Beacons and the Bluetooth Mesh

What is iOS Bluetooth Advertising?

When scanning for Bluetooth devices from an app or gateway you will usually pick up lots of iOS devices.

Every Bluetooth LE device, including iOS, has a unique MAC address. MAC address randomization is used on iOS so it’s not possible to track a particular device over time. However, there have been studies that have shown other Bluetooth information can be used to fingerprint devices.

The Bluetooth advertising uses a proprietary protocol and has no use for anyone other than Apple. The advertising is used to provide for what are called continuity messages that allow handoff of tasks, such as writing email, universal clipboard, making calls from a another Apple device, instant hotspot, auto unlock from Apple watch and photo transfer between Apple devices.

An iPhone only advertises if it is associated with an iCloud account to which at least two devices are registered. Advertising can be manually turned off in the Settings Menu. Disabling Bluetooth from the Control Center does not stop the transmission of continuity messages.

It’s surprising iOS devices advertise so often, even when continuity messages aren’t being used, because it uses a lot of battery power. This must be the cost of being able to provide the app handoff messages without the user having to initiate a manual action at both ends. Maybe Apple will be able to overlay the new ‘Find My’ messages in same or similar Bluetooth advertising so as to make best use of the battery.

iBeacons for Learning

There’s new research Exploring Bluetooth Beacon Use Cases in Teaching and Learning: Increasing the Sustainability of Physical Learning Spaces that reviews selected use cases of Bluetooth beacons in educational situations.

The paper covers attendance monitoring, smart campus operation, dissemination of educational content to students and the use of augmented reality (AR) combined with beacons.

App iClassPolyU used for research

Read about Beacons in Education

How Power and Advertising Interval Affect Battery Use

Nordic Semiconductor, the manufacturer of the System on a Chip (SoC) in most beacons has a useful online calculator that helps work out the battery current used when advertising or when connected.

You need to set the SoC chip type (see the specification for the beacon you are using), voltage (3v as it’s usually a coin cell), DCDC (usually off), clock (usually external) and tx payload (set to 31 bytes). You can then vary the role (advertising or connected), power and advertising interval to see the affect on the battery current.

Dividing the battery capacity by the current will gives the approximate battery life. The resultant battery life calculation will be a very rough approximation and will be less if the manufacturer has added extra circuitry such as sensors. The online calculator is best used to get an appreciation of how changing parameters or the SoC type affects battery life rather than being a definitive value. For more accurate battery use it’s necessary to measure the actual battery current.