New Nordic Semiconductor Wireless Q Magazine

Nordic Semiconductor, the manufacturer of the System on a Chip (SoC) in many beacons, has published the latest online issue of Wireless Quarter Magazine. It showcases the many uses of Nordic SoCs.

The latest issue of the magazine highlights the increasing use of IoT. Nordic Semiconductor has been known for enabling Bluetooth and cellular solutions and with their recent acquisition of Imagination Technologies this now extends to WiFi.

The magazine covers many usecases including:

  • Bluetooth connected prosthetics
  • CHIP smart home
  • Smart health

There’s also an informative article exploring the usefulness of patents.

Read about Beacon Proximity and Sensing for the Internet of Things (IoT)

Sensor beacons

Gateways

Cordova Bluetooth LE Plugin Updated

Cordova, previously called PhoneGap, is a mobile cross platform development tool that uses web pages and Javascript.

Don Coleman of Chariot Solutions maintains the open source cordova-plugin-ble-central custom plugin (blue area in above diagram) that provides a Bluetooth API for scanning, connecting to service characteristics, reading and writing values and characteristic change notification. Examples are provided.

The recent updates provide support for new permissions and API changes in Android 10+. It’s great to see the plugin updated because the problem with many tools and libraries is that they rarely keep up to date with changes in the underlying iOS and Android APIs.

iBeacon RSSI Anomaly Detection for Indoor Positioning

There’s new research on iBeacon Indoor Positioning Method Combined with Real-Time Anomaly Rate to Determine Weight Matrix that uses a weighted Levenberg-Marquadt (LM) algorithm to determine the location of ibeacons.

The solution processes the received signal strength (RSSI) to determine anomaly rates of beacons and hence filter out abnormal signals. This helps to overcome the problems of unreliable signal strength in indoor locations due to reflections and obstacles.

The system achieves an average positioning error of 1.5m.

Read about Using Beacons, iBeacons for Real-time Locating Systems (RTLS)

Easy IoT with Bluetooth Beacons

When people think about IoT sensors they tend to envisage, for experimenters, discrete electronic components connected to single board computers (SBC) or for industrial, custom sensors connected to microcontrollers.

The problem for experimenters is the solution is fragile and needs to be evolved into a custom electronic design before it can be used in production. For industrial solutions, they tend to be proprietary, require deeply invasive installation and very expensive.

Example IoT Dashboard Using Sensor Beacons

Sensor beacons provide an easy, ready-made solution that have the following advantages:

  • They provide a solution that’s equally as good for experimentation as it is for the final production
  • They require no soldering or electronics skills.
  • They can be placed in remote areas where there’s no power or network connectivity.
  • They can be self powered and last for 5+ years.
  • They can detect quantities such as position, movement, temperature, humidity, air pressure, light and magnetism (hall effect), proximity and heart rate.
  • They can be easily attached to existing to exiting assets to make them IoT enabled.
  • Being Bluetooth standards-based, the sensor data can be easily read via gateways, smartphone apps or single board computers and sent on, as necessary, to servers.
Bluetooth-WiFi Gateway

Using beacons sensors in this way also provides for the ‘big data’ required for AI machine learning.

Read more about Beacon Proximity and Sensing for the Internet of Things (IoT)

View Sensor Beacons

Developing a Bluetooth Internet Gateway

The Bluetooth SIG has a new Developer Study Guide by Martin Woolley showing how to create a Bluetooth gateway. Gateways are the bridge between Bluetooth devices and the Internet.

The developer study guide explains GAP, GATT, broadcasting devices and develops an architecture for capturing Bluetooth data:

It’s implemented using Python on a Raspberry Pi 4:

The guide has a section on Buy vs Build where it’s explained that, depending on your skills and budget, you might consider buying a commercial gateway.

Raspberry Pi based solutions aren’t always reliable in the long term because the micro SD card eventually fails. Most gateways also send (push) data to your server rather than an application having to query (pull) the gateway as is the case with the example in the study guide.

Beacon Proximity and Sensing for the Internet of Things (IoT)

View Commercial Gateways

FedEx SenseAware Beacon

FedEx has started to use Bluetooth sensor beacons to track packages. The SenseAware ID device provides more frequent location updates and temperature, humidity and vibration data for premium packages.

SenseAware ID is part of the FedEx SenseAware offering that has previously used devices with cellular technologies. SenseAware ID devices are instead detected by gateways at UPS sites.

View sensor beacons

View gateways

W2 Waterproof Test Video

Moko has a new video showing the W2 wearable beacon being placed in water:

The W2 advertises iBeacon, Eddystone and acceleration. It’s rechargeable via USB and can be configured to provide continuous, button triggered or motion triggered advertising.

The acceleration sensor is the STMicroelectronics LIS3DH that’s configurable for scales of up to ±2g/±4g/±8g/±16g.

View wearable beacons

View sensor beacons

Bluetooth Asset Tracking

Bluetooth tags/beacons detect the position of people and assets. Software maps jobs, valuable tools, parts, sub-assemblies and people onto your floor plans or maps.

The main uses are:

  • Searching. Knowing the location of something such as a piece of equipment, parts, stock, pallets, a job or person without ringing round. Locating expensive, shared, equipment so fewer spare assets are required to cover an area.
  • Security. Alerting when people or assets enter or leave an area.
  • Protection. Detecting quantities such as temperature and humidity for sensitive items that can spoil.
  • Process Control. Knowing where things have been. Knowing what happened at a particular location. Knowing when measured values exceeded their expected range.

Bluetooth LE is particularly suitable because it is:

  • Real Time. Better than barcode scans and NFC tags where the data is only as up to date as the last successful manual scan.
  • Compatible. Bluetooth LE works with existing devices such as smartphones, tablets, laptops and desktops.
  • Reliable. Works in electrically noisy situations such as the factory.
  • Inexpensive. Commodity hardware is more affordable than non-standard technologies such as ultra wideband (UWB).

The end result is reduced downtime, less time re-ordering or re-making things that have been lost, optimum productivity and better use of skilled staff doing their job rather than searching for assets and people.

Read about Beacons in Industry and the 4th Industrial Revolution (4IR)

Learn about Asset and Pallet Tracking for Manufacturers

Discover BeaconRTLS™

Read about BluetoothLocationEngine™