IoT Protocols

Haltian has a useful IoT protocols comparison. It provides a comparison of TE Cat 1, LTE Cat M1, EC-GSM-IoT, NB-Io, Zigbee, SigFox, LoRa, Google Thread, Bluetooth LE and Wirepas Mesh.

Haltian say “It’s is a question of selecting the best-suited option for each use-case at hand”. One thing they don’t say is that the protocols are not mutually exclusive. For example, it’s increasingly the case that more than one protocol is used, one for short on-site distances and another for intra-site communication. WiFi/Ethernet also aren’t mentioned which are often a component of IoT solutions.

Smart Farming with Bluetooth

Smart Farming, also sometimes known as the ‘Third Green Revolution’, is the use of IT to improve profitability, gain efficiency, reduce costs through making better, more optimal decisions and better management control.

Kristoffer Rist Skøien Senior R&D Engineer at Nordic Semiconductor, the making of the SoC in most beacons, has a recent blog post on Feeding the World with Connected Crops. He explains how farmers need to move beyond current precision agriculture (PA) and site specific crop management (SSCM) into more advanced realtime sensing of things such as weather conditions in a specific spot, soil humidity, soil acidity, growth progress and other productivity metrics.

IoT can improve the productivity of farming to improve yields, aid with cost management, waste reduction and automation to create a more efficient and productive business. In the future, this might even combine with autonomous vehicles for watering, fertilising and pesticide application.

There’s need to process significant amounts of data using game-changing business analytics at scale and at speed. Simple feedback mechanisms as well as complex deep learning algorithms can be combined with other, external data sources such as weather, market data or data from other farms. Techniques include benchmarking, analytics, predictive modelling and prognostics to provide models to manage crop failure risk.

A relatively recent paper, Big Data in Smart Farming – A review, covers the issues of extracting meaningful data from farm sensors. It explains the process from sensing and monitoring, through analysis and decision making to intervention with the implications on the efficiency of the entire supply chain. The paper covers the whole ecosystem that extends far from the farm itself:

Smart Farming is still in an early development stage. Current implementations are custom, proprietary solutions that can are experimental and expensive. Solutions need to be affordable, especially for developing countries. However, as with Industry, the early innovators will inevitably gain the early benefits while the laggards will get further left behind.

One way to reduce costs is using standard and open technologies. Bluetooth and more specifically, Bluetooth mesh, offers a low power, low cost, standard way of collecting sensor data. Open software platforms such as OpenATK and initiatives such as FIspace should make solutions more accessible.

Read about Beacon Proximity and Sensing for the Internet of Things (IoT)

How is IoT Going?

Vodafone have an informative new report, the Internet of Things (IoT) Barometer. It’s a survey of 1,430 companies worldwide into their use of IoT.

IoT adoption is increasing now that companies are buying more cost-effective, off the-shelf solutions rather than building their own from scratch:

74% of adopters believe that within five years, companies that haven’t adopted IoT will have fallen behind their competition.

Adoption is across all sectors:

“95% of adopters are already seeing benefits. Over half
(52%) say that the returns have been significant and
79% say IoT is enabling positive outcomes that would be
impossible without it.”

The main gains have been:

  • reduced operating costs (53%)
  • improved collection of data (48%)
  • increased revenue from existing streams (42%)

There’s also an accompanying video:

Read about Beacon Proximity and Sensing for the Internet of Things (IoT)

Bluetooth LE Advertising Channels

Bluetooth LE works at 2.4GHz, the same frequency used for WiFi and microwave ovens! There are two main types of Bluetooth LE transmission: advertising where the device only sends out data and connection-orientated using Generic Attributes (GATT) .

Bluetooth LE uses frequency hopping for increased reliability when there might be noise on a particular channel. When advertising, it uses channels 37, 37 and 39. If subsequently connected, it uses other channels:


Frequency Channels from RF Wireless-World

When only advertising, the transmission is very short of the order of 1 or 2 milliseconds. In between advertising, there is no transmission which is one of the main reasons why Bluetooth LE has very low power use:

Power use over time

Read about Choosing an Advertising Interval

IoT Sensors

Bluetooth LE provides a compelling way of implementing IoT sensing because:

  • The sensors are usually already cased and certified rather than experimentor, bare printed circuit boards.
  • Being wireless, they can be placed in remote areas that have no power.
  • Being Bluetooth LE, they can last on battery power for years.
  • Again, being Bluetooth LE, they are suitable for use in noisy electrical areas.
  • They are commodity rather than proprietary items and hence very low cost compared to legacy industrial sensors.
  • No soldering or wiring up is required.
  • They are easy to interface, for example, to Bluetooth gateways and smartphones.
  • They can participate in Bluetooth Mesh to communicate over large areas.
  • They detect a variety of quantities such as movement (accelerometer), temperature, humidity, air pressure, light and magnetism (hall effect), proximity, heart rate, fall detection, smoke, gas and water leak.
  • They are proven. For example, some of our temperature sensors are used to monitor airline cargo.
  • Software exists, such as BeaconServer™ such that you don’t need to write any software.
INGICS Movement Sensor

Need help? Consider a Feasibility Study.

Beacons for Lone Workers and Workers Under Duress

A critical use for beacons is protecting lone workers or those that might experience duress. Lone worker solutions traditionally used RFID that required workers to manually check-in to locations. If workers forgot or were in trouble you only knew their last location. Newer systems such as Motorola TRBONet used with 2-way radios and BeaconRTLS™ used with generic beacons allow continual tracking of location.

Another usecase related to lone working is warning workers when they are about to enter a hazardous area. An example of this is Lone Worker Solutions’ Safe Beacon feature that creates a virtual perimeter. If a control room needs to know someone has entered (or left) a zone, real time locating systems (RTLS) like BeaconRTLS™ can be used to set up zones with alerts.

It’s also possible to have workers press a button on a beacon as a form of SOS when they are under duress. An example of this is HID Global’s new Badge Beacon that addresses the growing need to protect doctors, nurses and other caregivers from threatening situations that arise in the hospital environment. This can also been done in a generic way by using a RTLS and detecting a beacon button press. Simpler solutions are also possible by having a simple app on the worker’s phone detect the beacon button press and send an alert.

Read about BeaconRTLS™

Consider a Feasibility Study

New iGS01S Bluetooth WiFi Gateway in Stock

We have the new INGICS iGS01S Bluetooth WiFi gateway in stock.

iGS01S with USB power cable

The iGS01S is a new version of the iGS01. It’s functionally compatible with the iGS01 in that you can replace an iGS01 with an iGS01S and it will behave similarly. Hence, it’s also compatible with BeaconServer™ and BeaconRTLS™.

iGS01 gateways allow you to scan for nearby Bluetooth devices and send the scanned data up to a server, including AWS IoT, via TCP, HTTP(S) POST or MQTT.

The main change is the case which the manufacturer has changed to allow commonality of parts with the Ethernet version, the iGS01E.

We also have the matching wall holder in stock.

Read about Beacon Proximity and Sensing for the Internet of Things (IoT)

Smart Cycling Helmet

Nordic have news of a new cycling helmet with embedded nRF52 device, also used inside many beacons, that detects acceleration and in conjunction with an app, can send location and crash alerts.

While it’s an interesting and innovative product, most of the work is done by the app. There’s no reason why a generic acceleration sensor beacon couldn’t have been used within the helmet (or elsewhere). However, we guess including anything extra inside a helmet, in a safe manner, poses some challenges.

An insight from this is that there are probably many untapped opportunities for vertical sensor beacon type applications that predominantly make use of apps to provide for much of the functionality.

Bluetooth for Smart Buildings

While there’s lots of technology used in much of our lives, most buildings currently don’t use much technology. The current low level of sophistication is such that people tend to suffer uncomfortable buildings with common complaints rooms are “too hot” or “too cold”. There are clearly opportunities for significant improvement, not just for occupants but also for companies occupying buildings, the building owners and solution vendors.

Last year, the Continental Automated Buildings Association (CABA), a leading international industry organisation with 380+ corporate members created a free white paper ‘Creating a New Deal for Buildings’ (pdf).

The paper explains how building automation systems (BAS) and IoT devices can be used to improve the value and utility of facilities. Solutions also provide ways to use less energy and ensure regulatory compliance.

The cost of automation systems isn’t large compared to building costs. The CABA are advocating the design of BAS, during the design phase, much earlier in the building process. The paper talks of the incentives and challenges. Open standards, ubiquitous connectivity and automatic discovery of devices are seen as aiding uptake. The paper goes on to clearly describe the benefits for owners, tenants and vendors. It also covers issues such as privacy, data ownership and sustainability.

The paper says:

“The introduction of LED lighting and the digitalization of lighting control systems add additional optimization dimensions to the interoperability potential of the BAS”

The first wave of Bluetooth Mesh devices have been connected lighting solutions. Bluetooth connected lighting paves the way for further innovations, on top, such as sensor networks for automation and control, asset management solutions and navigation solutions.

Bluetooth is is particularly suitable for smart buildings due to:

  • Compatibility and inter-operability. Vendors products work together and systems can be accessed via ubiquitous smartphones.
  • Low power. Independent devices can run for years on battery power.
  • Low cost. Standards based devices lower components and hence costs.

View the Bluetooth video on ‘The Expanding Role of Bluetooth in Smart Buildings’:

View Sensor Beacons

Read Beacon Proximity and Sensing for the Internet of Things (IoT)

Bluetooth Mesh Standard Evaluation

There’s recent new research on The Bluetooth Mesh Standard: An Overview and Experimental Evaluation (pdf) by Mathias Baert, Jen Rossey, Adnan Shahid ID and Jeroen Hoebeke of Ghent University.

The paper explains how the Bluetooth Mesh Standard came about to address the problem of the variety of BLE meshing solutions that were not interoperable. It includes a great introduction to Bluetooth LE and Mesh with some statistical and experimental insights into mesh performance.

The authors explain how the choice of the use of advertising advertising at 100% duty cycle for lower end-to-end delay has degraded the low energy advantage of BLE advertising thus limiting the usefulness in power (battery) sensitive applications.

The paper contains some useful insights:

  • The back off mechanism, used to decrease the chance of mesh network collisions, contributes most to the communication delay. However, as they identify, it’s this mechanism that provides reliability and scalability in larger networks. Disabling the backoff mechanism decreases the delay but makes the network less scaleable and robust.
  • Making the network more dense, has a positive effect on the round trip time (RTT). However too a dense network leads to more collisions.
  • Increasing the number of hops needed, making the network more sparse, has a negative effect on the RTT.

“It is clear that there are a lot of factors influencing the communication flows within a Bluetooth Mesh network, requiring more advanced management mechanism for optimizing the performance of the mesh network.”

However, the research had some limitations. Noise was simulated by introducing non-mesh beacons advertising every 20ms. This wasn’t very realistic given that most beacons advertise in the range 100ms to 1000ms. Re-transmit time was considered that complicated calculations – especially as re-transmit is application specific. It wasn’t mentioned that in many mesh sensing applications, unacknowledged messages are acceptable such that there’s no re-transmit. Also, the affect of other mesh network traffic, on the round trip time, wasn’t considered – only one mesh transmission at a time was considered.

Read about Beacons and the Bluetooth Mesh