Reducing Costs with Predictive Maintenance

The Nordic blog has an informative post on How IoT-Based Predictive Maintenance Can Reduce Costs. It explains how connected sensors can save maintenance costs through reduced downtime. The post provides some examples from the power industry and explains how the same techniques can be used in the tools, retail, distribution and physical infrastructure industries.

As the post mentions, the challenge is how to scale this up. We are told IoT is the solution. Here at BeaconZone, we don’t believe IoT is always the solution, especially where there’s a requirement for higher sensor sampling frequencies. There’s too much data, too much data transfer and too much server processing. It really doesn’t scale. Apart from the waste and cost of these resources, the latency of triggering events based on the data is too high. Instead, look to so called ‘edge’ or ‘fog’ computing where more processing is done nearer the sensors and only pertinent data is sent to other systems.

Need more help? Consider a Feasibility Study.

IoT Protocols

Haltian has a useful IoT protocols comparison. It provides a comparison of TE Cat 1, LTE Cat M1, EC-GSM-IoT, NB-Io, Zigbee, SigFox, LoRa, Google Thread, Bluetooth LE and Wirepas Mesh.

Haltian say “It’s is a question of selecting the best-suited option for each use-case at hand”. One thing they don’t say is that the protocols are not mutually exclusive. For example, it’s increasingly the case that more than one protocol is used, one for short on-site distances and another for intra-site communication. WiFi/Ethernet also aren’t mentioned which are often a component of IoT solutions.

How is IoT Going?

Vodafone have an informative new report, the Internet of Things (IoT) Barometer. It’s a survey of 1,430 companies worldwide into their use of IoT.

IoT adoption is increasing now that companies are buying more cost-effective, off the-shelf solutions rather than building their own from scratch:

74% of adopters believe that within five years, companies that haven’t adopted IoT will have fallen behind their competition.

Adoption is across all sectors:

“95% of adopters are already seeing benefits. Over half
(52%) say that the returns have been significant and
79% say IoT is enabling positive outcomes that would be
impossible without it.”

The main gains have been:

  • reduced operating costs (53%)
  • improved collection of data (48%)
  • increased revenue from existing streams (42%)

There’s also an accompanying video:

Read about Beacon Proximity and Sensing for the Internet of Things (IoT)

IoT Sensors

Bluetooth LE provides a compelling way of implementing IoT sensing because:

  • The sensors are usually already cased and certified rather than experimentor, bare printed circuit boards.
  • Being wireless, they can be placed in remote areas that have no power.
  • Being Bluetooth LE, they can last on battery power for years.
  • Again, being Bluetooth LE, they are suitable for use in noisy electrical areas.
  • They are commodity rather than proprietary items and hence very low cost compared to legacy industrial sensors.
  • No soldering or wiring up is required.
  • They are easy to interface, for example, to Bluetooth gateways and smartphones.
  • They can participate in Bluetooth Mesh to communicate over large areas.
  • They detect a variety of quantities such as movement (accelerometer), temperature, humidity, air pressure, light and magnetism (hall effect), proximity, heart rate, fall detection, smoke, gas and water leak.
  • They are proven. For example, some of our temperature sensors are used to monitor airline cargo.
  • Software exists, such as BeaconServer™ such that you don’t need to write any software.
INGICS Movement Sensor

Need help? Consider a Feasibility Study.

Minew IoT G1 Bluetooth Gateway Testing

If you want to quickly demonstrate or test IoT, the G1 gateway comes pre-setup to send data to beaconyun.com, Minew’s platform for testing.

The following video gives and overview of the platform and how it’s used:

The video mentions entering a beacon’s MAC address. Our article on Testing if a Beacon is Working explains how to find a MAC address.

More information:

Beacon Proximity and Sensing for the Internet of Things (IoT)

Using Beacons, iBeacons for Asset Tracking

Tracking things and/or people makes organisations more efficient through enhanced productivity. Most organisations want to improve a specific problem in one of the following areas:

  • Stock Control – Knowing how much you have, where, without any human checking
  • Finding Items – Picking items without time-consuming manual searching
  • Safety & Security – Knowing when assets move, go missing, are dropped or crashed into
  • Process Efficiency – Preventing human error of manual audits, knowing an expensive asset is being fully utilised, providing real time workplace instructions

Having solved a problem, it’s often the case that the act of digitisation allows other problems to be identified and also solved.

There are many ways to track assets using beacons. Beacons can be put on assets and detected by smartphones, Bluetooth gateways, Bluetooth mesh, or other Bluetooth LE devices such as single board computers. Alternatively, beacons can be fixed and the detecting device(s) can move. Software can be in the detecting devices and/or at a server receiving data from the detecting devices. It’s also possible to use a real time locating system (RTLS) to map the positions of assets.

The optimum solution depends on your situation and requirements. Here are some aspects to think about that will determine the optimum solution:

  • What’s the size of area(s) and sub-areas (rooms, zones) you need to cover and is this outside?
  • What’s the physical makeup of the areas (walls, racking) and their composition?
  • What’s the electrical infrastructure (power, WiFi and Ethernet availability) and can this be upgraded?
  • What assets need to be tracked?
  • What attributes of assets need to be tracked (just location or sensor data as well?)
  • How many need to be tracked?
  • How many are in the same place, at the same time?
  • How often do the assets move?
  • How accurate do you need the locating?
  • How up to date do you need the tracking?
  • Who needs to do the tracking, from where?
  • How many people need to do the tracking simultaneously?
  • What kinds of information/report do you require and what’s the desired method of receiving?
  • What existing IT systems have to be integrated?

Contact us if you need help with a complete solution.

Read about Real Time Locating

Read about BeaconRTLS

Read about Asset Tracking for Manufacturers

iGS02E without PoE

We now have the INGICS iGS02E Bluetooth to Ethernet gateway (without PoE) in stock.

This small device looks for Bluetooth LE devices and sends their advertising on to a server via TCP, HTTP(S) or MQTT including AWS IoT. If you use with sensor beacons, this provides a quick and easy way to provide for IoT sensing.

Compatible with BeaconServer™ and BeaconRTLS™.

We also stock the INGICS PoE splitter.

New Rugged Industrial Sensor Beacons in Stock

We have some early samples of the new INGICS iBS03 range of beacons in stock. They are functionally similar to the iBS01 range except are waterproof to IP67 and have a more robust case with 2m drop protection.

We stock three variants:
iBS03T – Temperature sensor
iBS03G – Motion (starting/moving/stopped) and fall detection
iBS03RG – Accelerometer for raw xyz